skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sanders, Lisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The experimental study of artificial language learning has become a widely used means of investigating the predictions of theories of language learning and representation. Although much is now known about the generalizations that learners make from various kinds of data, relatively little is known about how those representations affect speech processing. This paper presents an event-related potential (ERP) study of brain responses to violations of lab-learned phonotactics. Novel words that violated a learned phonotactic constraint elicited a larger Late Positive Component (LPC) than novel words that satisfied it. Similar LPCs have been found for violations of natively acquired linguistic structure, as well as for violations of other types of abstract generalizations, such as musical structure. We argue that lab-learned phonotactic generalizations are represented abstractly and affect the evaluation of speech in a manner that is similar to natively acquired syntactic and phonological rules. 
    more » « less
  2. null (Ed.)
    Reduplication is common, but analogous reversal processes are rare, even though reversal, which involves nested rather than crossed dependencies, is less complex on the Chomsky hierarchy. We hypothesize that the explanation is that repetitions can be recognized when they match and reactivate a stored trace in short-term memory, but recognizing a reversal requires rearranging the input in working memory before attempting to match it to the stored trace. Repetitions can thus be recognized, and repetition patterns learned, implicitly, whereas reversals require explicit, conscious awareness. To test these hypotheses, participants were trained to recognize either a reduplication or a syllable-reversal pattern, and then asked to state the rule. In two experiments, above-chance classification performance on the Reversal pattern was confined to Correct Staters, whereas above-chance performance on the Reduplication pattern was found with or without correct rule-stating. Final proportion correct was positively correlated with final response time for the Reversal Correct Staters but no other group. These results support the hypothesis that reversal, unlike reduplication, requires conscious, time-consuming computation. 
    more » « less